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Abstract: Among all the n-vertex bicyclic graphs, the first eight largest Laplacian spectra radii had been obtained
in the past, all of which are no smaller than n − 1. In this paper, it is first obtained that all the bicyclic graphs
on n vertices with Laplacian spectra radii at least n − 2 must contain two adjacent vertices which cover all the
vertices except possibly two and one of the two adjacent vertices must have the degree at least n−3. Then the total
forty-two such graphs are further ordered, and the ninth to the forty-first largest Laplacian spectra radii among all
the n-vertex bicyclic graphs are finally determined in this way.
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1 Introduction
In this paper, all the graphs we discussed are sim-
ple graphs. Let G be a graph with vertex set VG =
{v1, v2, . . . , vn} and edge set EG. Denote by NG(vi)
or simply N(vi) the set of all neighbours of a ver-
tex vi of G and by di the degree of vi. Let D(G) =
diag(d1, d2, . . . , dn) be the diagonal matrix of vertex
degrees. The Laplacian matrix L(G) of G is defined
by L(G) = D(G)−A(G), where A(G) is the (0, 1)-
adjacent matrix of G. The Laplacian characteristic
polynomial det(xI − L(G)) is denoted by Φ(G, x).
It is well known that L(G) is positive semi-definite,
symmetric and singular. We denote the ith largest
eigenvalue of L(G) simply by µi(G) and order them
in non-increasing order, i.e., µ1(G) ≥ µ2(G) ≥ · · · ≥
µn(G), and µ1(G) is called the Laplacian spectra ra-
dius of G, denoted by µ(G) in this paper. For v ∈ VG,
let dv denote the degree of v in G.

Dragoš Cvetković once introduced in his book [1]
that the motivation for founding the theory of graph
spectra has come from applications in Chemistry and
Physics. One of the main applications of graph spectra
to Chemistry is the application in a theory of unsatu-
rated conjugated hydrocarbons known as the Hückel
molecular orbital theory. In chemistry, there is a
closed relation between the molecular orbital energy
levels of π-electrons in conjugated hydrocarbons and
the eigenvalues of the corresponding molecular graph.
In [2], Ivan Gutman further exploited and discovered
the chemical applications of the Laplacian spectrum
of molecular graphs when studying the Wiener num-

ber.

Additionally, the Laplacian spectral radius of a
graph has numerous applications in theoretical chem-
istry, combinatorial optimization, communication net-
works, etc. For related reference, one may see [3]. In
[4], we can see that the Laplacian spectral radius is
also related to the algebraic connectivity, i.e., to the
second smallest eigenvalue (here G denote the com-
plement of G) from the equation µn−1(G) = n −
µ1(G). More importantly, Cvetković in [5] pointed
out twelve directions in graph spectra theory which
can offer us further research. It’s also mentioned that
one important direction is to classify and order graphs
with respect to graph spectra. So far, much research
had been made on ordering certain class of graphs
with respect to graph spectra, especially with respect
to the spectra radius and the Laplacian spectra radius,
and many relevant results in this direction have been
obtained. In [6-8], the ordering of unicyclic graphs
with respect to the spectra radius has been extended to
the eleventh. In [9-11], the ordering of bicyclic graphs
with respect to the spectra radius has been extended to
the tenth. While with respect to the Laplacian spectra
radius, the ordering of unicyclic graphs has been ex-
tended to the thirteenth in [12-14] and the ordering of
bicyclic graphs to the eighth in [15] and [16].

Recall that a bicyclic graph is a connected graph
in which the number of edges equals to the number of
vertices plus one. With respect to the Laplacian spec-
tra radius, He et al. [15] determined the ordering of
the n-vertex bicyclic graphs from the first one to the
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fourth together with the corresponding graphs (see the
graphs G1, G1′ , G2, G3, G4, G4′ of Fig.1 ). It turns
out that the Laplacian spectra radii of all these graphs
are in the interval (n − 1, n]. In [16], Li et al. first
identified the remaining n-vertex bicyclic graphs with
Laplacian spectra radii in [n − 1, n] by characteriz-
ing such graphs and then obtained the further order-
ing of the fifth to the eighth largest Laplacian spec-
tra radii together with the corresponding graphs (see
the graphs G5, G6, G7, G8, G8

′ of Fig. 1). In de-
tail, Li et al. obtained the partial ordering of some
graphs easily by applying algebraic method. For the
remaining graphs, which is difficult to order by alge-
braic method, they applied some Mathematica method
to completely solve this problem.

As one of the directions in graph spectra pointed
out by Cvetković in [5], ordering the bicyclic graphs
with respect to their Laplacian spectra is of interest
and significance. In this paper, designed to extend
the above ordering of n-vertex bicyclic graphs, we
first characterize the n-vertex bicyclic graphs with
Laplacian spectra radii in [n − 2, n] based on [16]
and then identify the remaining bicyclic graphs with
µ(G) ∈ [n−2, n] (forty-two graphs in total as you can
see in Fig. 2). Finally, we focus on ordering them by
algebraic method and consequently obtain the ninth
to the forty-first largest Laplacian spectra radii. Even
for the readers who has little knowledge of the Mathe-
matica, it is easy to understand. As we can see in this
paper, the bicyclic graphs with Laplacian spectra radii
in [n−2, n] is forty-two more than the bicyclic graphs
with Laplacian spectra radii in [n−1, n] though the in-
terval which we considered is just expanded by value
one than that considered by Li et al. Therefore, much
more difficult work is needed on the further ordering.
That is what we intend to work on next.

We first introduce the following lemmas that are
useful for our results.

Lemma 1 ([17]) Let G be a connected graph on
n ≥ 2 vertices, and maximum degree ∆(G). Then
µ(G) ≥ ∆(G) + 1, with equality attained if and only
if ∆(G) = n− 1.

Lemma 2 ([16]) Let G be a bicyclic graph on n ver-
tices, and let vi and vj be any two vertices of G. If vi
and vj are adjacent then di + dj ≤ n + 2; otherwise
di + dj ≤ n+ 1.

Lemma 3 ([18]) Let G be a graph on n > 1 vertices.
Then

µ(G) ≤ max{di +mi},

where mi =

∑
vivj∈EG

dj

di
.

Lemma 4 ([19]) Let G be a graph on n ≥ 2 vertices.
Then

µ(G) ≤ max{di + dj−|N(vi) ∩N(vj)| | vivj ∈ EG}.

Lemma 5 ([20]) Let G be a graph on n vertices.
Then µ(G) ≤ n, with the equality holds if and only
if G is disconnected, where G is the complement of G.

Lemma 6 ([15]) Let G be a connected rooted graph
on n vertices and root r, which consists of a subgraph
H (with at least two vertices) and n − |H| pendent
edges (neither in H) attached at vertex v of H (note
that |H| denotes the order of H). Then

Φ(G, x) = (x− 1)n−|H|Φ(H,x)

−(n− |H|)x(x− 1)n−|H|−1Φ(Lv(H), x),
where Lv(H) denotes the principle submatrix of
L(H) obtained from L(H) by deleting the row and
the column corresponding to the vertex v.

2 The main results
2.1 Bicyclic graphs with µ(G) at least n− 2.

In this section, we study the structure of n-vertex bi-
cyclic graphs whose Laplacian spectra radii are in the
interval [n − 2, n]. As the only eleven graphs (shown
in Fig. 1) whose Laplacian spectra radii are in the in-
terval [n − 1, n] have already been obtained, here we
have determined the remaining forty-two graphs with
µ(G) ∈ [n− 2, n− 1) that are shown in Fig. 2.
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Fig. 1. n-vertex bicyclic graphs with µ ∈ [n− 1, n]

Lemma 7 Let G be a graph on n ≥ 2 vertices with
µ(G) ∈ [n − 2, n]. Then G contains two adjacent
vertices that cover all its vertices, except possibly two.

Proof: If du + dv − |N(u) ∩ N(v)| < n − 2 for
any uv ∈ EG, then by Lemma 4, we have µ(G) <
n − 2, a contradiction. Therefore, there must exist
two adjacent vertices u and v such that

du + dv − |N(u) ∩N(v)| ≥ n− 2.

That is, |N(u) ∪N(v)| ≥ n− 2. Then it follows that
there exists at most two vertices that are not covered
by u and v. This completes the proof. ⊓⊔

Lemma 8 Let G be an n-vertex bicyclic graph with
µ(G) ∈ [n − 2, n] and let a and b denote the two ad-
jacent vertices in G as described in the above lemma7.
For each v ∈ VG, if v /∈ {a, b}, then we have dv ≤ 5.

Proof: We give a proof by contradiction. Assume
that there exists a vertex v such that v /∈ {a, b} but
dv ≥ 6. Let p and q denote the two vertices possibly
uncovered by a and b.

Case 1. If v ∈ N(a) ∪ N(b), for dv ≥ 6, then v
is adjacent to at least four neighbors of a or b, which
contradicts the bicyclic structure of G.
Case 2. If v is exactly one of p and q, say v = p. It is
easy to see that v can be only adjacent to the neighbors
of a or b (not counting a and b) and v has at least five
such neighbors (for dv ≥ 6), which contradicts the
bicyclic structure of G, too.

For the sake of simplicity, we still define a, b, p
and q as above. Moreover, we assume that ∆(G) <
n− 1, for otherwise, by Lemma 1 we have that trivial
case µ(G) = n. ⊓⊔

Lemma 9 Let G be a n-vertex bicyclic graph with
µ(G) ∈ [n − 2, n]. If n ≥ 14 then da ≥ n − 3 or
db ≥ n− 3.

Proof: By Lemma 3, there exists at least one vertex
v in G such that dv +mv ≥ n− 2.

Case 1. dv = 1.
Let u be the unique neighbor of v, then du ≥ n−

2− dv = n− 3. If u = a or u = b, then we are done.
Otherwise, du ≤ 5. Then we have du + dv ≤ 6 which
contradicts du + dv ≥ n− 2 for n ≥ 14.

Let N(v) = {u1, u2, · · · , ud}, where d = dv.
Then dv +mv = d+ 1

d

∑d
i=1 dui .

Case 2. dv = 2.
We have N(v) = {u1, u2}. By Lemma 2, we

have du1 +du2 ≤ n+2. So dv +mv ≤ 2+ n+2
2 , then

dv +mv < n− 2 for n > 10, thus dv ̸= 2.

Case 3. dv = 3.
We have N(v) = {u1, u2, u3} and there exists at

least one vertex which is different from a and b, say
u3. Clearly, du3 ≤ 5 by Lemma 2.2. Similarly, we
have du1 + du2 ≤ n + 2. So dv +mv ≤ 3 + n+2+5

3 ,
then dv +mv < n− 2 for n > 11, hence dv ̸= 3.

Case 4. dv = 4.
We have N(v) = {u1, u2, u3, u4} and there exist

at least two vertices both of which are different from
a and b, say u3 and u4. Clearly, du3 ≤ 5 and du4 ≤ 5.
Then

dv +mv ≤ 4 +
n+ 2 + 5 + 5

4
,

so dv +mv < n− 2 for n > 12, therefore dv ̸= 4.

Case 5. dv = 5.
Similarly, we have

dv +mv ≤ 5 +
n+ 2 + 5 + 5 + 5

5
.

But then dv +mv < n− 2 for n > 13, and therefore
dv ̸= 5.

Case 6. dv > 5.
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By Lemma 8 we have v = a or b. Without loss of
generality, we assume that v = a. Then here d = da.
It is not difficult to see that among all the neighbors of
a and b there are at most two pairs of such neighbors
which can be joined by edges. Therefore, at most two
edges are counted twice. Since G has n + 1 edges,
we have

∑d
i=1 dui ≤ (n + 1) + 2. Now we have

da + ma ≤ d + n+3
d . If this inequality is less than

n − 2, then we are done. Otherwise, we have that
d + n+3

d ≥ n − 2 holds. Solving a corresponding
quadratic equation in d we obtain that

d ≥ n− 2 +
√
(n− 2)2 − 4(n+ 3)

2
.

For n > 11, we have√
(n− 2)2 − 4(n+ 3) > n− 6,

then we obtain d > n − 4. That is d = da ≥ n − 3.
Note that the other region for d can be rejected as then
d < 2 which contradicts the assumption d > 5. ⊓⊔

Theorem 10 If G is an n-vertex bicyclic graph with
n ≥ 14 whose Laplacian spectra radius is in the in-
terval [n − 2, n − 1), then G is one of the forty-two
graphs from Fig. 2.

Proof: By Lemma 1, we know that ∆(G) ≤ n − 3
for µ(G) < n − 1, but, by Lemma 9, we have
∆(G) ≥ n − 3. Therefore ∆(G) = n − 3. It
is exactly the case when the two uncovered vertices
p and q arise. Clearly, |N(p) ∩ N(a)| ≤ 3 and
|N(q) ∩ N(a)| ≤ 3, for otherwise, it contradicts the
bicyclic structure. Note that the positions of p and q
in the graph is symmetric, so we don’t differentiate p
from q.

Observing vertices p and q we have that G9 and
G10 are the all graphs with |N(p) ∩ N(a)| = 3 and
|N(q) ∩N(a)| = 1.

Similarly, G13 is the unique graph with |N(p) ∩
N(a)| = 3 and |N(q) ∩ N(a)| = 0, G9′ , G11 and
G12 are the all graphs with |N(p) ∩ N(a)| = 2 and
|N(q) ∩ N(a)| = 2, G14, G15, G16, G16′ , G17, G18,
G19, G20, G21, G22 and G22′ are the all graphs with
|N(p) ∩ N(a)| = 2 and |N(q) ∩ N(a)| = 1, G26,
G26′ and G27 are the graphs with |N(p) ∩N(a)| = 2
and |N(q) ∩ N(a)| = 0, G23, G24, G25, G25′ , G28,
G28′ , G29, G30, G31, G32, G33, G34, G35, G36, G36′ ,
G36′′ and G41 are the graphs with |N(p)∩N(a)| = 1
and |N(q) ∩ N(a)| = 1, and G37, G38, G39, G40

and G40′ are the graphs with |N(p) ∩N(a)| = 1 and
|N(q) ∩N(a)| = 0.

q q qq
q

q

q qp p p
�

�
�

Q
Q
Q

Q
Q

Q

�
�

�

@
@

�
�

G9

qq qq
qq qp p p

�
�

HHHH

@
@

����

@
@

�
�

G9′

q q qq
qq qp p p q q

�
�
�

Q
Q
Q

Q
Q

Q

�
�

�

@
@

�
�

�
��

G10

q qq qqq
q qp p p

���
PPP

���
PPP

@
@

�
�

G11

q q qq
q

q
qq qp p p

�
�

@
@

@
@

�
�

�
�

@
@

�
�

@
@

�
��

A
AA

G12

q q
qq
qq

q qp p p
�
�

@
@

�
�

@
@
�
�

@
@

G13

q q
q q

qq
q qp p p

Q
Q
Q

�
�
�
@

@
�
�

G14

q
q
ppp q qq

q q
�
�

@
@

�
�

@
@

@
@

�
�

G15

q q q
q q qq qp p p

�
�
�

Q
Q
Q

@
@

�
�

G16

q q q
q q q

q
ppp

�
�
�

Q
Q
Q

@
@

�
�

G16′

WSEAS TRANSACTIONS on MATHEMATICS Guangqing Jin, Liancui Zuo

E-ISSN: 2224-2880 982 Issue 10, Volume 12, October 2013



q
q q qq

q qq qp p p
@

@

�
�

�
�

@
@

�
�

@
@

J
JJ

�
��

G17

q q q
q
q

q

q qp p p
,
,,

@
@@

l
ll

��
��

�
�

@
@

G18

q q q
q qq qq qp p p

@
@

�
�
@

@
�
�

�
�

G19

q q
q

q
qq qq qp p p

�
�

�
�

@
@

�
�

@
@

�
�

@
@

A
A
�
�

G20

qq q
q

q
qq qp p p

�
�
�

Q
Q
Q

�
�

@
@

G21

ppp q qq
q

q
qq
q

�
�

@
@

@
@

�
�

@
@

�
�

HH

G22

q
q

q
qq qq qq p p pq

@
@

�
�

�
�

@
@

�
�

@
@

A
A
�
�

D
D

A
A

G22′

q qq
q

q q

q qp p p
�
�

@
@

�
�

@
@

�
�

@
@

@
@

�
�

G23

q
q q qq

qq qp p p
@

@

�
�

�
�

@
@

�
�

@
@

@
@

�
�

G24

q
q

q
q

q
qqq qp p p

�
�

@
@

Q
Q

Q

�
�

�

�
�
�

Q
Q
Q

@
@

�
�

G25

q q q
q qq qp p p








J
J

J








J
J

J
�
�

@
@

G25′

q q
q

q
q q

q qp p p
�
�

@
@ �

�

�
�

@
@

G26

q
q

q
qq qq

q qp p p
@

@

�
�

�
�

@
@

@
@

�
�

A
A
�
�

G27

q
q

q
qq qqppp �

�

@
@

@
@

�
�

@
@

�
�
G27′

q qqqq
q

q
qq qp p p

�
�
�

Q
Q

Q

�
�

�
Q
Q
Q

�
�

@
@

�
�

@
@

G28

q
q

q
qq qq qp p p

@
@

�
�

�
�

@
@

A
A
�
�

G28′

q qq
q

q

q qp p pqq
�
�

@
@

@
@

�
�

�
�

@
@

T
T

G29

q
q

q
qq

qq qp p p
@
@

�
�

�
�

@
@
�
�

@
@

G30

q q qq
q

q
qq qp p p

�
�

A
A�

�
�

Q
Q
Q

Q
Q

Q

�
�

�

�
�

@
@

G31

q qq
qq q

q qp p p
�
�

@
@

@
@

�
�

�
�

@
@

G32

WSEAS TRANSACTIONS on MATHEMATICS Guangqing Jin, Liancui Zuo

E-ISSN: 2224-2880 983 Issue 10, Volume 12, October 2013



q
q qq

qq qq qp p p
�
�

@
@

@
@

�
�

@
@

�
�

�
�

G33

q qq q qqq qp p p
�
�

�
�

@
@

�
�

@
@

G34

q qq
qq

q
q
qq qp p p

�
�
�

�
�
�

Q
Q

Q

Q
Q
Q

�
�

�

�
�

@
@

G35

q qq qqq qp p p
�
�

�
�

A
A

A
A
�
�

@
@

G36

q qq qqq q
qqppp

�
�

�
�

A
A

A
A

�
�

@
@

��
HH

G36′
q
q

q
qqq qp p p

qq�
�
�

Q
Q
Q

�
�

�

Q
Q

Q
@

@
�
� HH

��
G36′′

q q
q qq

qq qp p p

��
@

@
�
�

�
�

@
@

@
@

�
�

G37
q q

q qq
q

q
q
ppp

��
@

@
�
�

�
�

@
@�

�

@
@

G38

q
q

q
qqq qp p p q q�

�
�

Q
Q
Q

Q
Q

Q

�
�

�

�
�

@
@ @

@
@
@

G39

q

q
q

q
qqq

q

q qp p p
�
�
�

Q
Q
Q

Q
Q

Q

�
�

�
J
J
J








G40

q
qq q

q qp p p q q q
�
�

@
@

@
@

�
�

@
@

�
�

�
�

G40′
q
qq q

q qp p p q q
q

�
�

@
@

@
@

�
�

@
@

�
�

�
�

��
@@

G41

Fig. 2. Bicyclic graphs with µ ∈ [n− 2, n− 1)

2.2 Ordering the graphs in Fig. 2

In this section, we will give the ordering of the graphs
in Fig. 2 with respect to their Laplacian spectra radii.
Let

g9(x) = x3 − (n+ 3)x2 + (5n− 8)x− 2n;

g9′(x) = x3 − (n+ 3)x2 + (5n− 8)x− 2n;

g10(x) = x5 − (n+ 6)x4 + (8n+ 3)x3

−(19n− 20)x2 + (14n− 11)x− 3n;

g11(x) = x4 − (n+ 5)x3 + (7n− 1)x2

−(13n− 17)x+ 5n;

g12(x) = x3 − (n+ 2)x2 + (4n− 6)x− 2n;

g13(x) = x4 − (n+ 5)x3 + (7n− 4)x2

−(10n− 14)x+ 3n;

g14(x) = x5 − (n+ 8)x4 + (10n+ 12)x3

−(32n− 24)x2 + (37n− 46)x− 11n;

g15(x) = x5 − (n+ 8)x4 + (10n+ 11)x3

−(31n− 28)x2 + (31n− 37)x− 8n;

g16(x) = x5 − (n+ 8)x4 + (10n+ 13)x3

−(33n− 24)x2 − (39n− 50)x− 11n;

g16′(x) = x5 − (n+ 8)x4 + (10n+ 13)x3

−(33n− 24)x2 − (39n− 50)x− 11n;

g17(x) = x4 − (n+ 5)x3

+(7n− 1)x2 − (13n− 19)x+ 4n;

g18(x) = x5 − (n+ 7)x4 + (9n+ 8)x3

−(26n− 22)x2 + (27n− 30)x− 8n;

g19(x) = x7 − (n+ 10)x6 + (12n+ 31)x5

−(55n+ 14)x4 + (121n− 86)x3

−(131n− 128)x2 + (64n− 43)x− 11n;

g20(x) = x6 − (n+ 8)x5 + (10n+ 15)x4

−(35n− 16)x3 + (51n− 53)x2

−(30n− 22)x+ 6n;

g21(x) = x6 − (n+ 9)x5 + (11n+ 21)x4

−(43n− 11)x3 + (72n− 73)x2
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−(49n− 43)x+ 11n;

g22(x) = x5 − (n+ 5)x4 + (7n+ 1)x3

−(15n− 17)x2 + (10n− 8)x− 2n;

g22′(x) = x5 − (n+ 5)x4 + (7n+ 1)x3

−(15n− 17)x2 + (10n− 8)x− 2n;

g23(x) = x4 − (n+ 6)x3

+(8n− 3)x2 − (13n− 20)x+ 4n;

g24(x) = x5 − (n+ 8)x4 + (10n+ 11)x3

−(31n− 28)x2 + (32n− 44)x− 8n;

g25(x) = x4 − (n+ 5)x3

+(7n− 3)x2 − (11n− 17)x+ 3n;

g25′(x) = x4 − (n+ 5)x3

+(7n− 3)x2 − (11n− 17)x+ 3n;

g26(x) = x6 − (n+ 9)x5 + (11n+ 21)x4

−(43n− 11)x3 + (73n− 80)x2

−(52n− 62)x+ 11n;

g27(x) = x4 − (n+ 4)x3

+(6n− 4)x2 − (8n− 12)x+ 2n;

g27′(x) = x4 − (n+ 4)x3

+(6n− 4)x2 − (8n− 12)x+ 2n;

g28(x) = x3 − (n+ 2)x2 + (4n− 7)x− n;

g28′(x) = x3 − (n+ 2)x2 + (4n− 7)x− n;

g29(x) = x6 − (n+ 8)x5 + (10n+ 13)x4

−(33n− 20)x3 + (44n− 51)x2

−(23n− 18)x+ 4n;

g30(x) = x4 − (n+ 5)x3

+(7n− 2)x2 − (12n− 18)x+ 4n;

g31(x) = x4 − (n+ 4)x3

+(6n− 3)x2 − (9n− 13)x+ 3n;

g32(x) = x6 − (n+ 9)x5 + (11n+ 19)x4

−(41n− 17)x3 + (63n− 71)x2

−(39n− 37)x+ 8n;

g33(x) = x7 − (n+ 10)x6 + (12n+ 30)x5

−(54n+ 8)x4 + (114n− 95)x3

−(115n− 126)x2 + (51n− 37)x− 8n;

g34(x) = x6 − (n+ 9)x5 + (11n+ 22)x4

−(44n− 8)x3 + (78n− 81)x2

−(59n− 65)x+ 14n;

g35(x) = x6 − (n+ 7)x5 + (9n+ 10)x4

−(28n− 18)x3 + (36n− 42)x2

−(18n− 14)x+ 3n;

g36(x) = x3 − (n+ 1)x2 + (3n− 5)x− n;

g36′(x) = x3 − (n+ 1)x2 + (3n− 5)x− n;

g36′′(x) = x3 − (n+ 1)x2 + (3n− 5)x− n;

g37(x) = x5 − (n+ 7)x4 + (9n+ 6)x3

−(24n− 26)x2 + (21n− 32)x− 4n;

g38(x) = x5 − (n+ 7)x4 + (9n+ 7)x3

−(25n− 27)x2 + (22n− 34)x− 4n;

g39(x) = x5 − (n+ 6)x4 + (8n+ 4)x3

−(20n− 22)x2 + (17n− 26)x− 3n;

g40(x) = x4 − (n+ 3)x3 + (5n− 4)x2

−(6n− 10)x+ n;

g40′(x) = x4 − (n+ 3)x3 + (5n− 4)x2

−(6n− 10)x+ n;

and

g41(x) = x3 − (n+ 2)x2 + (4n− 6)x− n− 3.

In the following, we will give the complete order-
ing of the forty-two graphs and determine the ninth to
the forty-first largest values of the Laplacian spectra
radii among all the n-vertex bicyclic graphs.

Theorem 11 Let Gi(i = 9, 9
′
, 10, · · · , 41) be the

graphs as shown in Fig. 2. When n ≥ 14, we have:

µ(G9) = µ(G9′) > µ(G10) > µ(G11) > µ(G12)
> µ(G13) > µ(G14) > µ(G15) > µ(G16)
= µ(G16′) > µ(G17) > µ(G18) > µ(G19) > µ(G20)
> µ(G21) > µ(G22) = µ(G22′) > µ(G23) > µ(G24)
> µ(G25) = µ(G25′) > µ(G26) > µ(G27) = µ(G27′)
> µ(G28) = µ(G28′) > µ(G29) > µ(G30) > µ(G31)
> µ(G32) > µ(G33) > µ(G34) > µ(G35) > µ(G36)
= µ(G36′) = µ(G36′′) > µ(G37) > µ(G38) > µ(G39)
> µ(G40) = µ(G40′) > µ(G41).

Proof: Applying Lemma 6, we can obtain all the
Laplacian characteristic polynomials by routine cal-
culations. Also we can see that µ(Gi) is the largest
root of gi(x) for i = 9, 9

′
, 10, · · · , 40′, 41.

In order to prove our result, we will apply three
kinds of methods to compare every two Laplacian
spectra radii step by step. All the three methods
are related to the monotonicity of the function corre-
sponding to the Laplacian characteristic polynomial.
We will make a full introduction in the following
text. Note that ∆(Gi) = n − 3 for all i, then by
Lemma 1.1 we have that µ(Gi) ∈ (n − 2, n − 1) for
i = 9, 9

′
, 10, · · · , 40′, 41.

For Φ(G9, x) = Φ(G9′ , x), Φ(G16, x) =
Φ(G16′ , x), g22(x) = g22′(x), Φ(G25, x) =
Φ(G25′ , x), g27(x) = g27′(x), Φ(G28, x) =
Φ(G28′ , x), g36(x) = g36′(x) = g36′′(x) and
g40(x) = g40′(x), we have µ(G9) = µ(G9′ ),
µ(G16) = µ(G16′), µ(G22) = µ(G22′), µ(G25) =
µ(G25′), µ(G27) = µ(G27′), µ(G28) = µ(G28′),
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µ(G36) = µ(G36′) = µ(G36′′) and µ(G40) =
µ(G40′).

Method 1. For some pair of graphs, by compar-
ing their Laplacian characteristic polynomials we can
see their difference is either constantly greater than 0
or constantly less than 0 in the interval (n − 2, n −
1). Combining with the corresponding function im-
age, then we can compare their roots in the interval
(n−2, n−1) easily. The following specific examples
will further illustrate this method. That is to say, for
such pair of graphs we can compare their Laplacian
spectra radii by Method 1. By applying Method 1, we
will obtain the partial ordering as follows: µ(G9) >
µ(G10) > µ(G11), µ(G13) > µ(G14), µ(G17) >
µ(G18), µ(G19) > µ(G20), µ(G23) > µ(G24),
µ(G37) > µ(G38), and µ(G39) > µ(G40) > µ(G41).

Clearly,

Φ(G10, x)− Φ(G9, x) = x2(x− 2)(x− 1)n−8

·[x3 − (n+ 2)x2 + (4n− 4)x− 2n− 2].

Let

f(x) = x3 − (n+ 2)x2 + (4n− 4)x− 2n− 2.

Then we have f ′′(x) = 6x − 2(n + 2) > 0 for x ∈
(n−2, n−1) and n ≥ 14. Therefore f ′(x) > f ′(n−
2) = (n− 4)2 > 0. This is to say that f(x) is strictly
monotone increasing when x ∈ (n− 2, n− 1). Then
f(x) > f(n− 2) = 2(n− 5) > 0 and

Φ(G10, x)− Φ(G9, x)
= x2(x− 2)(x− 1)n−8f(x) > 0,∀x ∈ (n− 2, n− 1).

Since Φ(G10, x) > Φ(G9, x), we have µ(G9) >
µ(G10).

Similarly,

Φ(G11, x)− Φ(G10, x) =
x(x− 1)n−8[2x3 − (2n+ 2)x2 + (6n− 7)x− 3n]
> 0, ∀x ∈ (n− 2, n− 1),

thus we have µ(G10) > µ(G11).
It is easy to verify that

Φ(G14, x)− Φ(G13, x) =
x(x− 1)n−7[2x3 − (2n− 2)x2 + (4n− 10)x− n]
> 0, ∀x ∈ (n− 2, n− 1),

so µ(G13) > µ(G14).
It is no difficult to prove that

Φ(G18, x)− Φ(G17, x) =
−x(x− 1)n−7[2x3 − (2n+ 5)x2 + (7n− 3)x− 4n]
> 0, ∀x ∈ (n− 2, n− 1),

hence µ(G17) > µ(G18).
It is clear that

(x− 2)g20(x)− g19(x)
= (x− 1)[x2 − (n− 1)x+ n] > 0

for x ∈ (n− 2, n− 1), then µ(G19) > µ(G20).
Since

Φ(G24, x)− Φ(G23, x)
= 2x2(x− 1)n−5[x− (n− 2)]
> 0, ∀x ∈ (n− 2, n− 1)

we have µ(G23) > µ(G24).
Because

Φ(G38, x)− Φ(G37, x)
= x2(x− 2)(x− 1)n−6[x− (n− 2)] > 0

for x ∈ (n − 2, n − 1), we obtain that µ(G37) >
µ(G38).

It is not difficult to verify that

Φ(G40, x)− Φ(G39, x) =
x2(x− 2)(x− 3)(x− 1)n−7[x− (n− 2)] > 0

for x ∈ (n− 2, n− 1), hence µ(G39) > µ(G40).
It is obvious that

Φ(G40, x)− Φ(G41, x)
= x(x− 1)n−7[x4 − (2n− 4)x3

+(11n− 49)x2 − (14n− 84)x+ n− 24] < 0

for x ∈ (n− 2, n− 1), so µ(G40) > µ(G41).

Method 2. For some pair of graphs, by apply-
ing Euclidean algorithm to their Laplacian character-
istic polynomials we can see the remainder is either
constantly greater than 0 or constantly less than 0 in
the interval (n − 2, n − 1). If so, we can compare
the Laplacian spectra radii of this pair of graphs by
Method 2. The following specific examples will fur-
ther illustrate this method. By using Method 2, we
can obtain the partial ordering as follows: µ(G25) >
µ(G26) > µ(G27), µ(G28) > µ(G29) and µ(G35) >
µ(G36) = µ(G36′′) > µ(G37).

With the help of mathematic procedure, we can
obtain that

g26(x) = (x2 − 4x+ 4)g25(x)
+2x3 − 2nx2 + (4n− 6)x− n.

It is not difficult to show that

2x3 − 2nx2 + (4n− 6)x− n > 0

for x ∈ (n− 2, n− 1). Then we have g26(µ(G25)) >
0 = g26(µ(G26)) for µ(G25) ∈ (n − 2, n − 1).

WSEAS TRANSACTIONS on MATHEMATICS Guangqing Jin, Liancui Zuo

E-ISSN: 2224-2880 986 Issue 10, Volume 12, October 2013



Since g26(x) is monotone increasing in the interval
(n− 2, n− 1), we have µ(G25) > µ(G26).

Similarly, we can get

g26(x) = (x2 − 5x+ 5)g27(x)
−x3 + nx2 + (2− 2n)x+ n.

It is easy to verify that

−x3 + nx2 + (2− 2n)x+ n < 0

for x ∈ (n− 2, n− 1). Then we have g26(µ(G27)) <
0 = g26(µ(G26)) for µ(G27) ∈ (n − 2, n − 1).
Since g26(x) is monotone increasing in the interval
(n− 2, n− 1), we have µ(G26) > µ(G27).

Since

g29(x) = (x3 − 6x2 + 8x− 6)g28(x)
−7x2 + (9n− 24)x− 2n,

and −7x2 + (9n − 24)x − 2n > 0 for x ∈ (n −
2, n − 1), we have g29(µ(G28)) > 0 = g29(µ(G29))
for µ(G28) ∈ (n−2, n−1). Because g29(x) is mono-
tone increasing in the interval (n−2, n−1), we obtain
that µ(G28) > µ(G29).

Because g35(x) = (x3−6x2+9x−3)g36(x)−x,
we have g35(µ(G36)) < 0 = g35(µ(G35)). Since
g35(x) is monotone increasing in the interval (n −
2, n− 1), we obtain that µ(G35) > µ(G36).

It is obvious that

g37(x) = (x2 − 6x+ 5)g36(x) + x2 − 7x+ n,

and x2− 7x+n > 0 for x ∈ (n− 2, n− 1). Then we
have g37(µ(G36)) > 0 = g37(µ(G37)). Since g37(x)
is monotone increasing in the interval (n− 2, n− 1),
we have µ(G36) > µ(G37).

Method 3. For some pair of graphs, by compar-
ing their Laplacian characteristic polynomials we can
see their difference is neither constantly greater than 0
nor constantly less than 0 in the interval (n−2, n−1).
However, in certain subinterval of (n− 2, n− 1) their
difference is either constantly greater than 0 or con-
stantly less than 0. The following specific examples
will illustrate how to determine this subinterval. In
this way, we can compare their Laplacian spectra radii
by Method 1 in this subinterval. In this case, by ap-
plying Method 3, we will obtain the partial ordering
as follows: µ(G11) > µ(G12) > µ(G13), µ(G14) >
µ(G15) > µ(G16) > µ(G17), µ(G18) > µ(G19),
µ(G20) > µ(G21) > µ(G22) = µ(G22′) > µ(G23),
µ(G24) > µ(G25), µ(G27) > µ(G28), µ(G29) >
µ(G30) > µ(G31) > µ(G32) > µ(G33) > µ(G34) >
µ(G35) and µ(G38) > µ(G39).

Let

h1(x) = xg12(x)− g11(x) =
3x3 − (3n+ 5)x2 + (11n− 17)x− 5n.

Clearly, µ(G12) is the largest root of xg12(x) and
µ(G11) is the largest root of g11(x). Furthermore,
we have h1(n − 2) = −10 < 0 and h1(n − 1) =
3n2 − 17n + 9 > 0. Let α1 be the largest root
of h1(x), then α1 ∈ (n − 2, n − 1). We can
get g11(x) = m1(x)h1(x) + r1(x) and xg12(x) =
m2(x)h1(x) + r1(x), where

r1(x) =
−8

9
x2 + (

8n

9
− 17

9
)x− 5n

9
.

It can be checked that r1(x) < 0 for x ∈ (n−2, n−1).
Then we have g11(α1) = r1(α1) < 0 = g11(µ(G11)),
therefore µ(G11) > α1. Similarly, we have µ(G12) >
α1. For h1(x) > 0 when x ∈ (α1, n − 1) (here
(α1, n−1) is just the subinterval we need to determine
as mentioned above), we have xg12(x) > g11(x). So
µ(G11) > µ(G12).

Let

h2(x) = (x− 2)g12(x)− g13(x)
= x3 − (n− 2)x2 − 2x+ n.

It is obvious that µ(G12) is the largest root of (x −
2)g12(x) and µ(G13) is the largest root of g13(x). Let
α2 be the largest root of h2(x), then we have α2 ∈
(n − 2, n − 1) for h2(n − 2) = −n + 4 < 0 and
h2(n− 1) = n2 − 3n+3 > 0. Moreover, We can get
(x − 2)g12(x) = m3(x)h2(x) + r2(x) and g13(x) =
m4(x)h2(x) + r2(x), where

r2(x) = 12x2 − 11nx+ 10n.

Finally, it can be checked that r2(x) > 0 for x ∈
(n−2, n−1). Then we have g13(α2) = r2(α2) > 0 =
g13(µ(G13)). It can be seen that µ(G13) ∈ (n−2, α2)
as well as µ(G12). For h2(x) < 0 when x ∈ (n −
2, α2), then we have (x − 2)g12(x) < g13(x). So
µ(G12) > µ(G13).

Let

h3(x) = g14(x)− g15(x)
= x3 − (n+ 4)x2 + (6n− 9)x− 3n.

Clearly, µ(G14) is the largest root of g14(x) and
µ(G15) is the largest root of g15(x). Let α3 be the
largest root of h3(x), then we have α3 ∈ (n−2, n−1)
for h3(n − 2) = −6 < 0 and h3(n − 1) = n2 −
8n + 4 > 0 for n ≥ 14. We can get g14(x) =
m5(x)h3(x) + r3(x) and g15(x) = m6(x)h3(x) +
r3(x), where

r3(x) = 8x2 − (5n+ 1)x+ 4n.

Moreover, it is easy to verify that r3(x) > 0 for x ∈
(n − 2, n − 1). Then we have g14(α3) = r3(α3) >
0 = g14(µ(G14)). It can be seen that µ(G14) ∈ (n −

WSEAS TRANSACTIONS on MATHEMATICS Guangqing Jin, Liancui Zuo

E-ISSN: 2224-2880 987 Issue 10, Volume 12, October 2013



2, α3) and so as µ(G15). Since h3(x) < 0 for x ∈
(n − 2, α3), we have g14(x) < g15(x). So µ(G14) >
µ(G15).

Let

h4(x) = g16(x)− g15(x)
= 2x3 − (2n+ 4)x2 + (8n− 13)x− 3n,

and α4 be the largest root of h4(x), then we have α4 ∈
(n−2, n−1) for h4(n−2) = −6 < 0 and h4(n−1) =
2n2 − 12n + 7 > 0 (n ≥ 14). We can get g15(x) =
m7(x)h4(x) + r4(x) and g16(x) = m8(x)h4(x) +
r4(x), where

r4(x) =
−5x

4
+

n

4
.

It is easy to check that r4(x) < 0 for x ∈ (n−2, n−1).
Then we have g15(α4) = r4(α4) < 0 = g15(µ(G15)).
It can be seen that µ(G15) ∈ (α4, n − 1) as well as
µ(G16). For h4(x) > 0 when x ∈ (α4, n − 1), then
g15(x) < g16(x). So µ(G15) > µ(G16).

Let

h5(x) = (x− 3)g17(x)− g16(x)
= x3 − (n+ 2)x2 + (4n− 7)x− n.

It is clear that µ(G17) is the largest root of (x −
3)g17(x) and µ(G16) is the largest root of g16(x).
Let α5 be the largest root of h5(x), then we have
α5 ∈ (n − 2, n − 1) for h5(n − 2) = −2 < 0 and
h5(n− 1) = n2 − 6n+ 4 > 0 (n ≥ 14). We can get
g16(x) = m9(x)h5(x) + r5(x) and (x − 3)g17(x) =
m10(x)h5(x) + r5(x), where

r5(x) = −2x2 + (n+ 6)x− 3n.

It is not difficult to verify that r5(x) < 0 for x ∈
(n − 2, n − 1). Then we have g16(α5) = r5(α5) <
0 = g16(µ(G16)). It can be seen that µ(G16) ∈
(α5, n−1) and so as µ(G17). For h5(x) > 0 when x ∈
(α5, n − 1), we obtain that g16(x) < (x − 3)g17(x).
So µ(G16) > µ(G17).

Let

h6(x) = g19(x)− (x− 1)(x− 2)g18(x)
= 2x4 − (2n+ 6)x3 + (10n− 6)x2

−(14n− 17)x+ 5n.

It is obvious that µ(G18) is the largest root of (x −
1)(x − 2)g18(x) and µ(G19) is the largest root of
g19(x). Let α6 be the largest root of h6(x), then we
have α6 ∈ (n − 2, n − 1) because h6(n − 2) =
−6n + 22 < 0 and h6(n − 1) = 2n3 − 16n2 +
34n − 15 > 0 (n ≥ 14). We can get g19(x) =

m11(x)h6(x) + r6(x) and (x − 1)(x − 2)g18(x) =
m12(x)h6(x) + r6(x), where

r6(x) = −x3 + 4x2 − 19

4
x+

n

4
.

It is not difficult to show that r6(x) < 0 for x ∈
(n − 2, n − 1). Then we have g19(α6) = r6(α6) <
0 = g19(µ(G19)). It can be seen that µ(G19) ∈
(α6, n − 1) as well as µ(G18). For h6(x) > 0 when
x ∈ (α6, n− 1), then (x− 1)(x− 2)g18(x) < g19(x).
Thus µ(G18) > µ(G19).

Let

h7(x) = (x− 1)g20(x)− xg21(x)
= 2x5 − (2n+ 10)x4 + (14n+ 4)x3

−(32n− 32)x2 + (25n− 22)x− 6n.

Clearly, µ(G20) is the largest root of (x−1)g20(x) and
µ(G21) is the largest root of xg21(x). Let α7 be the
largest root of h7(x), then we have α7 ∈ (n−2, n−1)
since h7(n− 2) = −7n2+50n− 84 < 0 and h7(n−
1) = 2n4 − 22n3 +79n2 − 103n+38 > 0 (n ≥ 14).
We can get (x − 1)g20(x) = m13(x)h7(x) + r7(x)
and xg21(x) = m14(x)h7(x) + r7(x), where

r7(x) = −2x4 + (4 + 5n
2 )x3 + (15− 12n)x2

+(23n2 − 11)x− 3n.

It is not difficult to prove that r7(x) > 0 for x ∈
(n − 2, n − 1). Then we have (α7 − 1)g20(α7) =
r7(α7) > 0 = (µ(G20) − 1)g20(µ(G20)). Since
(x − 1)g20(x) is monotone increasing in the interval
(n− 2, n− 1), we have µ(G20) ∈ (n− 2, α7) and so
as µ(G21). Since h7(x) < 0 for x ∈ (n − 2, α7), we
have (x−1)g20(x) < xg21(x). So µ(G20) > µ(G21).

Let

h8(x) = (x− 4)g22(x)− g21(x)
= 2x3 − (2n+ 3)x2 + (7n− 11)x− 3n.

It is obvious that µ(G22) is the largest root of (x −
4)g22(x) and µ(G21) is the largest root of g21(x). Let
α8 be the largest root of h8(x), then we have α8 ∈
(n − 2, n − 1) for h8(n − 2) = −6 < 0 and h8(n −
1) = 2n2 − 11n + 6 > 0 (n ≥ 14). We can get
(x− 4)g22(x) = m15(x)h8(x) + r8(x) and g21(x) =
m16(x)h8(x) + r8(x), where

r8(x) = − 3

16
x2 + (

39

16
− 5n

16
)x− n

16
.

It is easy to show that r8(x) < 0 for x ∈ (n−2, n−1).
Then we have g21(α8) = r8(α8) < 0 = g21(µ(G21)).
It can be seen that µ(G21) ∈ (α8, n − 1) as well as
µ(G22). For h8(x) > 0 when x ∈ (α8, n − 1), we
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obtain that (x− 4)g22(x) > g21(x). Hence µ(G21) >
µ(G22).

Let

h9(x) = g22(x)− xg23(x)
= x4 − (n− 4)x3 − (2n+ 3)x2 + (6n− 8)x− 2n.

Clearly, µ(G22) is the largest root of g22(x) and
µ(G23) is the largest root of xg23(x). Let α9 be the
largest root of h9(x), then we have α9 ∈ (n−2, n−1)
since h9(n − 2) = −n2 + 6n − 12 < 0 and
h9(n − 1) = n3 − 2n2 − 3n + 2 > 0 (n ≥ 14).
We can get g22(x) = m17(x)h9(x) + r9(x) and
xg23(x) = m18(x)h9(x) + r9(x), where

r9(x) = 40x3 − (39n+ 2)x2 + (66n− 80)x− 20n.

It is not difficult to verify that r9(x) > 0 for x ∈
(n−2, n−1). Then we have g22(α9) = r9(α9) > 0 =
g22(µ(G22)). It can be seen that µ(G22) ∈ (n−2, α9)
and so as µ(G23). Because h9(x) < 0 for x ∈ (n −
2, α9), we have g22(x) < xg23(x). Thus µ(G22) >
µ(G23).

Let

h10(x) = (x− 3)g25(x)− g24(x)
= x3 − (n+ 2)x2 + (4n− 7)x− n.

It is clear that µ(G25) is the largest root of (x −
3)g25(x) and µ(G24) is the largest root of g24(x).
Let α10 be the largest root of h10(x), then we have
α10 ∈ (n − 2, n − 1) for h10(n − 2) = −2 < 0
and h10(n − 1) = n2 − 6n + 4 > 0 (n ≥ 14). We
can obtain that g24(x) = m19(x)h10(x) + r10(x) and
(x− 3)g25(x) = m20(x)h10(x) + r10(x), where

r10(x) = −2x2 + (2n− 2)x− 2n.

It is obvious that r10(x) < 0 for x ∈ (n − 2, n −
1). Then we have g24(α10) = r10(α10) < 0 =
g24(µ(G24)). It can be seen that µ(G24) ∈ (α10, n −
1) and so as µ(G25). Since h10(x) > 0 for x ∈
(α10, n− 1), we obtain that (x− 3)g25(x) > g24(x).
Therefore µ(G24) > µ(G25).

Let

h11(x) = xg28(x)− g27(x)
= 2x3 − (2n+ 3)x2 + (7n− 12)x− 2n.

Clearly, µ(G28) is the largest root of xg28(x) and
µ(G27) is the largest root of g27(x). Let α11 be
the largest root of h11(x), then we have α11 ∈
(n − 2, n − 1) for h11(n − 2) = −4 < 0 and
h11(n − 1) = 2n2 − 11n + 7 > 0 (n ≥ 14).
We can get g27(x) = m21(x)h11(x) + r11(x) and
xg28(x) = m22(x)h11(x) + r11(x), where

r11(x) = −7

4
x2 + (

7n

4
− 3)x− n

2
.

It is easy to verify that r11(x) < 0 for x ∈ (n −
2, n− 1). Then we have g27(α11) = r11(α11) < 0 =
g27(µ(G27)). It can be seen that µ(G27) ∈ (α11, n −
1) as well as µ(G28). For h11(x) > 0 when x ∈
(α11, n − 1), then xg28(x) > g27(x). So µ(G27) >
µ(G28).

Let

h12(x) = (x− 1)3g30(x)− xg29(x)
= 3x5 − (3n+ 12)x4 + (18n− 4)x3

−(32n− 38)x2 + (20n− 18)x− 4n.

It is obvious that µ(G30) is the largest root of (x −
1)3g30(x) and µ(G29) is the largest root of xg29(x).
Let α12 be the largest root of h12(x), then we have
α12 ∈ (n − 2, n − 1) since h12(n − 2) = −6n2 +
42n − 68 < 0 and h12(n − 1) = 3n4 − 30n3 +
98n2 − 120n + 45 > 0 (n ≥ 14). We can
get xg29(x) = m23(x)h12(x) + r12(x) and (x −
1)3g30(x) = m24(x)h12(x) + r12(x), where

r12(x) = −14

3
x4 + (

14n

3
+

31

9
)x3

+(−115n

9
+

136

9
)x2 + (

88n

9
− 10)x− 20n

9
.

It is not difficult to prove that r12(x) < 0 for
x ∈ (n − 2, n − 1). Then we have α12g29(α12) =
r12(α12) < 0 = µ(G29)g29(µ(G29)). It can be
seen that µ(G29) ∈ (α12, n − 1) and so as µ(G30).
For h12(x) > 0 when x ∈ (α12, n − 1), then
(x− 1)3g30(x) > xg29(x). Thus µ(G29) > µ(G30).

Let

h13(x) = g31(x)− g30(x)
= x3 − (n+ 1)x2 + (3n− 5)x− n.

Clearly, µ(G30) and µ(G31) are the largest roots of
g30(x) and g31(x), respectively. Let α13 be the largest
root of h13(x), then we have α13 ∈ (n − 2, n − 1)
since h13(n − 2) = −2 < 0 and h13(n − 1) =
n2 − 5n + 3 > 0 (n ≥ 14). We can obtain that
g30(x) = m23(x)h13(x) + r13(x) and g31(x) =
m24(x)h13(x) + r13(x), where

r13(x) = −x[x− (n− 2)].

It is easy to verify that r13(x) < 0 for x ∈ (n −
2, n − 1). Then we have g30(α13) = r13(α13) <
0 = g30(µ(G30)). It can be seen that µ(G30) ∈
(α13, n− 1) as well as µ(G31). For h13(x) > 0 when
x ∈ (α13, n − 1), we have g31(x) > g30(x). Hence
µ(G30) > µ(G31).

Let

h14(x) = (x3 − 6x2 + 9x− 3)g31(x)− (x− 1)g32(x)
= 2x5 − (2n+ 6)x4 + (10n− 5)x3

−(15n− 18)x2 + (7n− 2)x− n.
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Obviously, µ(G31) and µ(G32) are the largest roots
of (x3 − 6x2 + 9x − 3)g31(x) and (x − 1)g32(x),
respectively. Let α14 be the largest root of h14(x),
then we have α14 ∈ (n − 2, n − 1) because h14(n −
2) = −5n2 +31n− 44 < 0 and h14(n− 1) = 2n4 −
18n3 + 52n2 − 54n + 17 > 0 (n ≥ 14). We can get
(x3−6x2+9x−3)g31(x) = m25(x)h14(x)+r14(x)
and (x− 1)g32(x) = m26(x)h14(x) + r14(x), where

r14(x) = (
n

2
− 1

4
)x3 + (−23n

4
+

31

2
)x2

+(
41n

4
− 55

2
)x− 13n

4
.

It is not difficult to verify that r14(x) > 0 for x ∈
(n − 2, n − 1). Then we have (α14 − 1)g32(α14) =
r14(α14) > 0 = (µ(G32) − 1)g32(µ(G32)). It can be
seen that µ(G32) ∈ (n − 2, α14) and so as µ(G31).
For h14(x) < 0 when x ∈ (n − 2, α14), then (x −
1)g32(x) > (x3−6x2+9x−3)g31(x). So µ(G31) >
µ(G32).

Clearly,

(x− 1)g32(x)− g33(x) =
x[−2x4 + (2n+ 6)x3 − (10n− 7)x2

+(13n− 18)x− 4n].

Let

h15(x) = −2x4 + (2n+ 6)x3

−(10n− 7)x2 + (13n− 18)x− 4n.

It is obvious that µ(G32) and µ(G33) are the largest
roots of (x − 1)g32(x) and g33(x), respectively. Let
α15 be the largest root of h15(x), then we have α15 ∈
(n − 2, n − 1) for h15(n − 2) = 4(n − 4) > 0 and
h15(n−1) = −2n3+16n2−35n+17 < 0 (n ≥ 14).
We can get (x− 1)g32(x) = m27(x)h15(x) + r15(x)
and g33(x) = m28(x)h15(x) + r15(x), where

r15(x) = (−1

4
)x3 + (

n

4
− 1

2
)x2 − x.

It is not difficult to show that r15(x) < 0 for x ∈ (n−
2, n− 1). Then we have g33(α15) = r15(α15) < 0 =
g33(µ(G33)). It can be seen that µ(G33) ∈ (α15, n −
1) as well as µ(G32). For h15(x) < 0 when x ∈
(α15, n − 1), then (x − 1)g32(x) < g33(x). Thus
µ(G32) > µ(G33).

Let

h16(x) = (x− 1)g34(x)− g33(x)
= x5 − (n+ 6)x4 + (8n+ 6)x3 − (22n− 20)x2

+(22n− 28)x− 6n.

It is clear that µ(G33) and µ(G34) are the largest roots
of g33(x) and (x− 1)g34(x), respectively. Let α16 be

the largest root of h16(x), then we have α16 ∈ (n −
2, n−1) for h16(n−2) = −2(n2−9n+20) < 0 and
h16(n−1) = n4−12n3+50n2−80n+35 > 0 (n ≥
14). We can get (x − 1)g34(x) = m29(x)h16(x) +
r16(x) and g33(x) = m30(x)h16(x) + r16(x), where

r16(x) = −4x4 + (4n+ 13)x3

+(14− 21n)x2 + (27n− 37)x− 8n.

It can be verified that r16(x) < 0 for x ∈ (n −
2, n − 1). Then we have g33(α16) = r16(α16) <
0 = g33(µ(G33)). It can be seen that µ(G33) ∈
(α16, n − 1) and so as µ(G34). Since h16(x) > 0 for
x ∈ (α16, n − 1), we have (x − 1)g34(x) > g33(x).
Hence µ(G33) > µ(G34).

Let

h17(x) = (x− 3)g35(x)− (x− 1)g34(x)
= 2x4 − (2n+ 7)x3 + (11n− 6)x2

−(16n− 23)x+ 5n.

Clearly, µ(G34) and µ(G35) are the largest roots of
(x − 1)g34(x) and (x − 3)g35(x), respectively. Let
α17 be the largest root of h17(x), then we have α17 ∈
(n − 2, n − 1) for h17(n − 2) = −4n + 18 < 0 and
h17(n− 1) = 2n3 − 17n2 +40n− 20 > 0 (n ≥ 14).
We can obtain that (x− 1)g34(x) = m31(x)h17(x) +
r17(x) and (x− 3)g35(x) = m32(x)h17(x) + r17(x),
where

r17(x) = (− 3

16
)x3+(

3n

16
− 1

4
)x2−(

n

8
+

5

16
)x+

n

16
.

It is easy to verify that r17(x) < 0 for x ∈ (n −
2, n − 1). Then we have (α17 − 1)g34(α17) =
r17(α17) < 0 = (µ(G34) − 1)g34(µ(G34)). It can
be seen that µ(G34) ∈ (α17, n−1) as well as µ(G35).
Since h17(x) > 0 for x ∈ (α17, n − 1), we have
(x−3)g35(x) > (x−1)g34(x). So µ(G34) > µ(G35).

Let

h18(x) = g39(x)− g38(x)
= x4 − (n+ 3)x3 + (5n− 5)x2 − (5n− 8)x+ n.

It is obvious that µ(G38) and µ(G39) are the largest
roots of g38(x) and g39(x), respectively. Let α18 be
the largest root of h18(x), then we have α18 ∈ (n −
2, n − 1) for h18(n − 2) = 4 − n < 0 and h18(n −
1) = n3 − 8n2 + 17n − 9 > 0 (n ≥ 14). We can
get g38(x) = m33(x)h18(x) + r18(x) and g39(x) =
m34(x)h18(x) + r18(x), where

r18(x) = −x[x− (n− 2)].

It is not difficult to show that r18(x) < 0 for x ∈
(n− 2, n− 1). Then we have g38(α18) = r18(α18) <
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0 = g38(µ(G38)). It can be seen that µ(G38) ∈
(α18, n − 1) and so as µ(G39). For h18(x) > 0
when x ∈ (α18, n − 1), then g39(x) > g38(x). Thus
µ(G38) > µ(G39).

It can be seen that for every pair of graphs we
can definitely compare their Laplacian spectra radii
by one of the above three methods. In this way, we
finally obtained the complete ordering and the ninth
to the forty-first largest Laplacian spectra radii among
all the n-vertex bicyclic graphs.
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